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Photochemistry of Aromatic Compounds. Photosolvolysis 
of 2-(3,5-Dimethoxyphenyl)ethyl Methanesulfonate 

Sir: 

Photochemical solvolyses of numerous substituted and un-
substituted benzyl systems have been studied.1 We wish to 
report the first example of photosolvolysis of a 2-arylethyl 
system which is initiated by excitation of the aryl group and 
accompanied by its migration.2 Furthermore, solvolysis 
product distributions suggest the involvement of a phenonium 
ion. 

Irradiation3 of a 0.0065 M solution of 2-(3,5-dimethoxy-
phenyl)ethyl methanesulfonate4,5 ( la) in 50% (v/v) aqueous 
methanol yielded 2a6a (28.5%),7 3a5 (19.1%), 4a6b (8.1%), 5a8 

(5.3%), 66c (1.1%), V (3.3%), and recovered la (8.0%).9 The 
ir spectrum (neat) of 5a displayed bands at 2840 (CH3O) and 
1610 c m - ' (aromatic); the uv spectrum (hexane) Xmax 275 (« 
1600), 277 (( 1600), and 282 nm (e 1670); and the 1H NMR 
spectrum (100 MHz, CDCI3) broadened singlets at 5 6.24 and 
6.21 (2 H, aromatic), equal singlets at 8 3.78 and 3.67 (6 H, 
CH3O), and an A2B2 multiplet centered at 8 3.1210 from 5 2.98 
to 3.27 (4 H, CH 2CH 2) . Irradiation3 of a 0.0065 M solution 
of «-octyl methanesulfonate" in 50% aqueous methanol 
yielded only recovered ester. Therefore, photosolvolysis and 
other processes of 1 are the result of an initial interaction of 
the excited 3,5-dimethoxyphenyl chromophore with the 
methanesulfonate group.12 

Irradiation3 of a 0.0065 M solution of lb 1 3 in 50% aqueous 
methanol yielded 2 (26.7%),7 3 (21.7%), 4 (9.3%), 5 (6.3%), 
6 (0.4%), 7 (2.1%), and recovered 1 (10.7%). By mass spec­
trometry15 1, 2, 3, and 5 each contained > 1.98 atoms of excess 
deuterium per molecule, and by 1H NMR 1 consisted of a 6.1:1 
mixture respectively of lb and Ic, 2 of a 1.1:1 mixture re­
spectively of 2b and 2c, 3 of a 1.1:1 mixture respectively of 3b 
and 3c, and 5 of a 2.4:1 mixture of 5b and 5c.16 By mass spec­
trometry15 4 contained 1.89 atoms of excess deuterium per 
molecule, and by 1H NMR only 4b was detected. The spectrum 
consisted of a doublet at 5 2.53, J = 7.5 Hz (2 H, benzyl), a 
broad multiplet centered at 8 1.19 from 8 1.07 to 1.30 (1 H, 
methyl), and resonances for aromatic (3 H) and methoxy 
protons (6 H) unaltered with respect to the spectrum of 4a. For 
minor components 6 and 7 deuterium content and location 
were not determined. A second photolysis3 of lb resulted in a 
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comparable product distribution and in almost identical mass 
spectral and 1 H N M R analyses. 

There are several mechanistic interpretations consistent with 
the product distribution obtained with l b , but all of them in­
clude phenonium ion 8 as an in termedia te or transit ion state . 
One possible mechanism involves initial photoinduced clea­
vages to give 8 and free radical 9. For 9 in t ramolecular sub­
stitution yields 5b and hydrogen abstract ion from methanol 
4b. If 8 is simply a transition state, it opens to essentially equal 
amounts of carbenium ions 10a and 10b, which then undergo 

CH3O. 

[ I b ] * 

lb 

OCH3 CH3O 

CH2-CD2 

8 

.OCH3 

CH3O. OCH3 

\̂ A.2v-̂  I 2 

10a, X = H; Y = D 
10b, X = D; Y = H 

several processes: (a) cap ture by solvent to give 2 and 3; (b) 
cap ture by methanesulfonate to give 1; (c) in t ramolecular al-
kylation to give 5; and (d) hydride migration to give carbenium 
ion 11. Cap tu re of 11 by solvent yields deute ra ted analogues 
of 6 and 7.1 7 

CH3O- OCH, CH3O. .OCH3 

(D)H-C-Me 
+ 
11 

If 8 is an intermediate, capture by water, methanol, and 
methanesulfonate would lead directly to 2, 3, and 1, respec-
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tively, and rearrangement to 5. Leakage of 8 to 10 would lead 
to 6 and 7 through ll.18-19 

If formed, 125 would not be expected to survive the photol­
ysis conditions used for 1. Irradiation3 of a 0.0029 M solution 
of 12 in 50% aqueous methanol containing 0.0042 M meth-
anesulfonic acid yielded (GLC analysis, n-octadecane internal 
standard) 4a (26.2%), 6 (0.5%), 7 (2.1%), and no recovered 
12.21'22 However, in photolyses of 1, 12 is most likely an in­
termediate in a minor pathway to 4. As noted, a small amount 
of deuterium was lost on going from lb to 4, and this is con­
sistent with the intermediacy of a deuterated analogue of 12 
produced from 10b and/or l l .2 3 

The nature of the interaction between excited 3,5-di-
methoxyphenyl and the methanesulfonate group is unknown 
but will be the subject of further investigation. As noted, it is 
also unknown whether 8 is an intermediate or simply a tran­
sition state, but study of an appropriate chiral system may 
answer this question. 

Acknowledgment is made to the donors of the Petroleum 
Research Fund, administered by the American Chemical 
Society, for support of this research. 
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Solution Structure and Ligand Exchange in the 
Five-Coordinate Molecular Complexes NiX2(PMe3)3 

Sir: 

Synthesis and determination of the stereochemistries of 
five-coordinate metal complexes have been subject to a con­
siderable increase of interest during the last decade, but few 
studies have reported the solution structures of these complexes 
or kinetic studies of five-coordinate metal centers.1-7 We wish 
to present evidence for the solution structure and the ligand 
exchange mechanism in NiX2(PMe3)3 complexes, obtained 
from 31Pj1Hj NMR spectroscopy. 

In earlier papers we have shown7 that trimethylphosphine 
Ni(II) complexes, NiX2(PMe3)3 (X = CN, Cl, Br, I), are 
examples of five-coordinate d8 complexes. They are reasonably 
stable as crystalline solids, but labile in solution, resulting in 
different species depending on the concentration, the nature 
of the solvent, and the presence of excess ligand. Thus the so­
lution structures were not well understood.5,7 

Figure 1 shows 1H noise decoupled Fourier transform 31P 
NMR spectra of solutions of NiX2(PMe3)3 (X = CN, Cl, Br, 
I) in 1:1 CH2CI2/CD2CI2 solutions at -75 0C. The slow ex­
change limit spectra are obtained for the four complexes. They 
are among the very scarce five-coordinate complexes which 
exhibit stereochemical rigidity at not too low a tempera­
ture.8 

At —75 0C, the solution spectra present an A3 pattern for 
X = CN and an A2B pattern for X = Cl, Br, and I. These re­
sults are consistent with the two trigonal bipyramid (= TBP) 
configurations: trans-JBP (X = CN) and m-TBP (X = Cl, 
Br, I) previously reported for these complexes.7 But NMR 
spectroscopy alone cannot determine unambiguously the ge­
ometry of the NiX2L3 species in solution for X = halide, since 
the same A2B pattern is expected for the cis trigonal bipyra-
midal and square pyramidal geometries. Nevertheless, the 
existence of only one isomer in CH2Cl2 solution is clearly 
demonstrated (at least in concentrations detectable by 
NMR). 
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